direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×C23.7D4, C24.45D4, C23.6C24, C24.470C23, 2+ 1+4.12C22, (C2×D4).148D4, C22⋊C4⋊2C23, C23⋊C4⋊6C22, (C22×C4)⋊8C23, C23.25(C2×D4), (C23×C4)⋊14C22, (C2×D4).40C23, (C22×C4).114D4, C22.26C22≀C2, C22.40(C22×D4), (C2×2+ 1+4).9C2, (C22×D4).333C22, C22.D4⋊28C22, (C2×C4).26(C2×D4), (C2×C23⋊C4)⋊17C2, C2.61(C2×C22≀C2), (C2×C22⋊C4)⋊37C22, (C2×C22.D4)⋊47C2, SmallGroup(128,1756)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C23.7D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=1, f2=d, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, ebe-1=fbf-1=bcd, ece-1=cd=dc, cf=fc, de=ed, df=fd, fef-1=de-1 >
Subgroups: 836 in 397 conjugacy classes, 108 normal (8 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C24, C24, C23⋊C4, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C22.D4, C22.D4, C23×C4, C22×D4, C22×D4, C2×C4○D4, 2+ 1+4, 2+ 1+4, C2×C23⋊C4, C23.7D4, C2×C22.D4, C2×2+ 1+4, C2×C23.7D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22≀C2, C22×D4, C23.7D4, C2×C22≀C2, C2×C23.7D4
(1 30)(2 31)(3 32)(4 29)(5 9)(6 10)(7 11)(8 12)(13 23)(14 24)(15 21)(16 22)(17 27)(18 28)(19 25)(20 26)
(2 31)(3 5)(4 10)(6 29)(8 12)(9 32)(14 27)(15 18)(16 22)(17 24)(19 25)(21 28)
(1 11)(2 31)(3 9)(4 29)(5 32)(6 10)(7 30)(8 12)(13 23)(14 27)(15 21)(16 25)(17 24)(18 28)(19 22)(20 26)
(1 7)(2 8)(3 5)(4 6)(9 32)(10 29)(11 30)(12 31)(13 20)(14 17)(15 18)(16 19)(21 28)(22 25)(23 26)(24 27)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 25 7 22)(2 21 8 28)(3 27 5 24)(4 23 6 26)(9 14 32 17)(10 20 29 13)(11 16 30 19)(12 18 31 15)
G:=sub<Sym(32)| (1,30)(2,31)(3,32)(4,29)(5,9)(6,10)(7,11)(8,12)(13,23)(14,24)(15,21)(16,22)(17,27)(18,28)(19,25)(20,26), (2,31)(3,5)(4,10)(6,29)(8,12)(9,32)(14,27)(15,18)(16,22)(17,24)(19,25)(21,28), (1,11)(2,31)(3,9)(4,29)(5,32)(6,10)(7,30)(8,12)(13,23)(14,27)(15,21)(16,25)(17,24)(18,28)(19,22)(20,26), (1,7)(2,8)(3,5)(4,6)(9,32)(10,29)(11,30)(12,31)(13,20)(14,17)(15,18)(16,19)(21,28)(22,25)(23,26)(24,27), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,25,7,22)(2,21,8,28)(3,27,5,24)(4,23,6,26)(9,14,32,17)(10,20,29,13)(11,16,30,19)(12,18,31,15)>;
G:=Group( (1,30)(2,31)(3,32)(4,29)(5,9)(6,10)(7,11)(8,12)(13,23)(14,24)(15,21)(16,22)(17,27)(18,28)(19,25)(20,26), (2,31)(3,5)(4,10)(6,29)(8,12)(9,32)(14,27)(15,18)(16,22)(17,24)(19,25)(21,28), (1,11)(2,31)(3,9)(4,29)(5,32)(6,10)(7,30)(8,12)(13,23)(14,27)(15,21)(16,25)(17,24)(18,28)(19,22)(20,26), (1,7)(2,8)(3,5)(4,6)(9,32)(10,29)(11,30)(12,31)(13,20)(14,17)(15,18)(16,19)(21,28)(22,25)(23,26)(24,27), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,25,7,22)(2,21,8,28)(3,27,5,24)(4,23,6,26)(9,14,32,17)(10,20,29,13)(11,16,30,19)(12,18,31,15) );
G=PermutationGroup([[(1,30),(2,31),(3,32),(4,29),(5,9),(6,10),(7,11),(8,12),(13,23),(14,24),(15,21),(16,22),(17,27),(18,28),(19,25),(20,26)], [(2,31),(3,5),(4,10),(6,29),(8,12),(9,32),(14,27),(15,18),(16,22),(17,24),(19,25),(21,28)], [(1,11),(2,31),(3,9),(4,29),(5,32),(6,10),(7,30),(8,12),(13,23),(14,27),(15,21),(16,25),(17,24),(18,28),(19,22),(20,26)], [(1,7),(2,8),(3,5),(4,6),(9,32),(10,29),(11,30),(12,31),(13,20),(14,17),(15,18),(16,19),(21,28),(22,25),(23,26),(24,27)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,25,7,22),(2,21,8,28),(3,27,5,24),(4,23,6,26),(9,14,32,17),(10,20,29,13),(11,16,30,19),(12,18,31,15)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | ··· | 2O | 4A | ··· | 4J | 4K | ··· | 4P |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | C23.7D4 |
kernel | C2×C23.7D4 | C2×C23⋊C4 | C23.7D4 | C2×C22.D4 | C2×2+ 1+4 | C22×C4 | C2×D4 | C24 | C2 |
# reps | 1 | 3 | 8 | 3 | 1 | 3 | 6 | 3 | 4 |
Matrix representation of C2×C23.7D4 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 4 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 4 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 4 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 2 |
0 | 0 | 0 | 0 | 0 | 3 |
0 | 0 | 3 | 3 | 0 | 0 |
0 | 0 | 4 | 2 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 4 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,4,1,0,0,0,0,0,0,4,0,0,0,0,0,4,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,1,0,0,0,0,4,0,0,0,0,0,0,0,0,0,3,4,0,0,0,0,3,2,0,0,2,0,0,0,0,0,2,3,0,0],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,3,4,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,3] >;
C2×C23.7D4 in GAP, Magma, Sage, TeX
C_2\times C_2^3._7D_4
% in TeX
G:=Group("C2xC2^3.7D4");
// GroupNames label
G:=SmallGroup(128,1756);
// by ID
G=gap.SmallGroup(128,1756);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,758,718,2028]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=1,f^2=d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,e*b*e^-1=f*b*f^-1=b*c*d,e*c*e^-1=c*d=d*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=d*e^-1>;
// generators/relations